Deep Belief Networks Are Compact Universal Approximators

نویسندگان

  • Nicolas Le Roux
  • Yoshua Bengio
چکیده

Deep Belief Networks (DBN) are generative models with many layers of hidden causal variables, recently introduced by Hinton et al. (2006), along with a greedy layer-wise unsupervised learning algorithm. Building on Le Roux and Bengio (2008) and Sutskever and Hinton (2008), we show that deep but narrow generative networks do not require more parameters than shallow ones to achieve universal approximation. Exploiting the proof technique, we prove that deep but narrow feed-forward neural networks with sigmoidal units can represent any Boolean expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Narrow Boltzmann Machines are Universal Approximators

We show that deep narrow Boltzmann machines are universal approximators of probability distributions on the activities of their visible units, provided they have sufficiently many hidden layers, each containing the same number of units as the visible layer. Besides from this existence statement, we provide upper and lower bounds on the sufficient number of layers and parameters. These bounds sh...

متن کامل

Deep, Narrow Sigmoid Belief Networks Are Universal Approximators

In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impractical way.

متن کامل

Refinements of Universal Approximation Results for Deep Belief Networks and Restricted Boltzmann Machines

We improve recently published results about resources of restricted Boltzmann machines (RBM) and deep belief networks (DBN)required to make them universal approximators. We show that any distribution pon the set {0,1}(n) of binary vectors of length n can be arbitrarily well approximated by an RBM with k-1 hidden units, where k is the minimal number of pairs of binary vectors differing in only o...

متن کامل

Universal Approximation Results for the Temporal Restricted Boltzmann Machine and the Recurrent Temporal Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) has proved to be a powerful tool in machine learning, both on its own and as the building block for Deep Belief Networks (multi-layer generative graphical models). The RBM and Deep Belief Network have been shown to be universal approximators for probability distributions on binary vectors. In this paper we prove several similar universal approximation resu...

متن کامل

Representational Power of Restricted Boltzmann Machines and Deep Belief Networks

Deep belief networks (DBN) are generative neural network models with many layers of hidden explanatory factors, recently introduced by Hinton, Osindero, and Teh (2006) along with a greedy layer-wise unsupervised learning algorithm. The building block of a DBN is a probabilistic model called a restricted Boltzmann machine (RBM), used to represent one layer of the model. Restricted Boltzmann mach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural Computation

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2010